3.1.32 \(\int x^2 (a+b \text {csch}(c+d \sqrt {x})) \, dx\) [32]

Optimal. Leaf size=260 \[ \frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {PolyLog}\left (2,-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {PolyLog}\left (2,e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {PolyLog}\left (3,-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {PolyLog}\left (3,e^{c+d \sqrt {x}}\right )}{d^3}-\frac {120 b x \text {PolyLog}\left (4,-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {PolyLog}\left (4,e^{c+d \sqrt {x}}\right )}{d^4}+\frac {240 b \sqrt {x} \text {PolyLog}\left (5,-e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \sqrt {x} \text {PolyLog}\left (5,e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \text {PolyLog}\left (6,-e^{c+d \sqrt {x}}\right )}{d^6}+\frac {240 b \text {PolyLog}\left (6,e^{c+d \sqrt {x}}\right )}{d^6} \]

[Out]

1/3*a*x^3-4*b*x^(5/2)*arctanh(exp(c+d*x^(1/2)))/d-10*b*x^2*polylog(2,-exp(c+d*x^(1/2)))/d^2+10*b*x^2*polylog(2
,exp(c+d*x^(1/2)))/d^2+40*b*x^(3/2)*polylog(3,-exp(c+d*x^(1/2)))/d^3-40*b*x^(3/2)*polylog(3,exp(c+d*x^(1/2)))/
d^3-120*b*x*polylog(4,-exp(c+d*x^(1/2)))/d^4+120*b*x*polylog(4,exp(c+d*x^(1/2)))/d^4-240*b*polylog(6,-exp(c+d*
x^(1/2)))/d^6+240*b*polylog(6,exp(c+d*x^(1/2)))/d^6+240*b*polylog(5,-exp(c+d*x^(1/2)))*x^(1/2)/d^5-240*b*polyl
og(5,exp(c+d*x^(1/2)))*x^(1/2)/d^5

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 7, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.389, Rules used = {14, 5545, 4267, 2611, 6744, 2320, 6724} \begin {gather*} \frac {a x^3}{3}-\frac {240 b \text {Li}_6\left (-e^{c+d \sqrt {x}}\right )}{d^6}+\frac {240 b \text {Li}_6\left (e^{c+d \sqrt {x}}\right )}{d^6}+\frac {240 b \sqrt {x} \text {Li}_5\left (-e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \sqrt {x} \text {Li}_5\left (e^{c+d \sqrt {x}}\right )}{d^5}-\frac {120 b x \text {Li}_4\left (-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {Li}_4\left (e^{c+d \sqrt {x}}\right )}{d^4}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(a + b*Csch[c + d*Sqrt[x]]),x]

[Out]

(a*x^3)/3 - (4*b*x^(5/2)*ArcTanh[E^(c + d*Sqrt[x])])/d - (10*b*x^2*PolyLog[2, -E^(c + d*Sqrt[x])])/d^2 + (10*b
*x^2*PolyLog[2, E^(c + d*Sqrt[x])])/d^2 + (40*b*x^(3/2)*PolyLog[3, -E^(c + d*Sqrt[x])])/d^3 - (40*b*x^(3/2)*Po
lyLog[3, E^(c + d*Sqrt[x])])/d^3 - (120*b*x*PolyLog[4, -E^(c + d*Sqrt[x])])/d^4 + (120*b*x*PolyLog[4, E^(c + d
*Sqrt[x])])/d^4 + (240*b*Sqrt[x]*PolyLog[5, -E^(c + d*Sqrt[x])])/d^5 - (240*b*Sqrt[x]*PolyLog[5, E^(c + d*Sqrt
[x])])/d^5 - (240*b*PolyLog[6, -E^(c + d*Sqrt[x])])/d^6 + (240*b*PolyLog[6, E^(c + d*Sqrt[x])])/d^6

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4267

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(Ar
cTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*
fz*x)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5545

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplif
y[(m + 1)/n], 0] && IntegerQ[p]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6744

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Dist[f*(m/(b*c*p*Log[F])), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps

\begin {align*} \int x^2 \left (a+b \text {csch}\left (c+d \sqrt {x}\right )\right ) \, dx &=\int \left (a x^2+b x^2 \text {csch}\left (c+d \sqrt {x}\right )\right ) \, dx\\ &=\frac {a x^3}{3}+b \int x^2 \text {csch}\left (c+d \sqrt {x}\right ) \, dx\\ &=\frac {a x^3}{3}+(2 b) \text {Subst}\left (\int x^5 \text {csch}(c+d x) \, dx,x,\sqrt {x}\right )\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {(10 b) \text {Subst}\left (\int x^4 \log \left (1-e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d}+\frac {(10 b) \text {Subst}\left (\int x^4 \log \left (1+e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {(40 b) \text {Subst}\left (\int x^3 \text {Li}_2\left (-e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^2}-\frac {(40 b) \text {Subst}\left (\int x^3 \text {Li}_2\left (e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^2}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {(120 b) \text {Subst}\left (\int x^2 \text {Li}_3\left (-e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^3}+\frac {(120 b) \text {Subst}\left (\int x^2 \text {Li}_3\left (e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^3}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {120 b x \text {Li}_4\left (-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {Li}_4\left (e^{c+d \sqrt {x}}\right )}{d^4}+\frac {(240 b) \text {Subst}\left (\int x \text {Li}_4\left (-e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^4}-\frac {(240 b) \text {Subst}\left (\int x \text {Li}_4\left (e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^4}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {120 b x \text {Li}_4\left (-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {Li}_4\left (e^{c+d \sqrt {x}}\right )}{d^4}+\frac {240 b \sqrt {x} \text {Li}_5\left (-e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \sqrt {x} \text {Li}_5\left (e^{c+d \sqrt {x}}\right )}{d^5}-\frac {(240 b) \text {Subst}\left (\int \text {Li}_5\left (-e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^5}+\frac {(240 b) \text {Subst}\left (\int \text {Li}_5\left (e^{c+d x}\right ) \, dx,x,\sqrt {x}\right )}{d^5}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {120 b x \text {Li}_4\left (-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {Li}_4\left (e^{c+d \sqrt {x}}\right )}{d^4}+\frac {240 b \sqrt {x} \text {Li}_5\left (-e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \sqrt {x} \text {Li}_5\left (e^{c+d \sqrt {x}}\right )}{d^5}-\frac {(240 b) \text {Subst}\left (\int \frac {\text {Li}_5(-x)}{x} \, dx,x,e^{c+d \sqrt {x}}\right )}{d^6}+\frac {(240 b) \text {Subst}\left (\int \frac {\text {Li}_5(x)}{x} \, dx,x,e^{c+d \sqrt {x}}\right )}{d^6}\\ &=\frac {a x^3}{3}-\frac {4 b x^{5/2} \tanh ^{-1}\left (e^{c+d \sqrt {x}}\right )}{d}-\frac {10 b x^2 \text {Li}_2\left (-e^{c+d \sqrt {x}}\right )}{d^2}+\frac {10 b x^2 \text {Li}_2\left (e^{c+d \sqrt {x}}\right )}{d^2}+\frac {40 b x^{3/2} \text {Li}_3\left (-e^{c+d \sqrt {x}}\right )}{d^3}-\frac {40 b x^{3/2} \text {Li}_3\left (e^{c+d \sqrt {x}}\right )}{d^3}-\frac {120 b x \text {Li}_4\left (-e^{c+d \sqrt {x}}\right )}{d^4}+\frac {120 b x \text {Li}_4\left (e^{c+d \sqrt {x}}\right )}{d^4}+\frac {240 b \sqrt {x} \text {Li}_5\left (-e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \sqrt {x} \text {Li}_5\left (e^{c+d \sqrt {x}}\right )}{d^5}-\frac {240 b \text {Li}_6\left (-e^{c+d \sqrt {x}}\right )}{d^6}+\frac {240 b \text {Li}_6\left (e^{c+d \sqrt {x}}\right )}{d^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.93, size = 273, normalized size = 1.05 \begin {gather*} \frac {a x^3}{3}+\frac {2 b \left (d^5 x^{5/2} \log \left (1-e^{c+d \sqrt {x}}\right )-d^5 x^{5/2} \log \left (1+e^{c+d \sqrt {x}}\right )-5 d^4 x^2 \text {PolyLog}\left (2,-e^{c+d \sqrt {x}}\right )+5 d^4 x^2 \text {PolyLog}\left (2,e^{c+d \sqrt {x}}\right )+20 d^3 x^{3/2} \text {PolyLog}\left (3,-e^{c+d \sqrt {x}}\right )-20 d^3 x^{3/2} \text {PolyLog}\left (3,e^{c+d \sqrt {x}}\right )-60 d^2 x \text {PolyLog}\left (4,-e^{c+d \sqrt {x}}\right )+60 d^2 x \text {PolyLog}\left (4,e^{c+d \sqrt {x}}\right )+120 d \sqrt {x} \text {PolyLog}\left (5,-e^{c+d \sqrt {x}}\right )-120 d \sqrt {x} \text {PolyLog}\left (5,e^{c+d \sqrt {x}}\right )-120 \text {PolyLog}\left (6,-e^{c+d \sqrt {x}}\right )+120 \text {PolyLog}\left (6,e^{c+d \sqrt {x}}\right )\right )}{d^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(a + b*Csch[c + d*Sqrt[x]]),x]

[Out]

(a*x^3)/3 + (2*b*(d^5*x^(5/2)*Log[1 - E^(c + d*Sqrt[x])] - d^5*x^(5/2)*Log[1 + E^(c + d*Sqrt[x])] - 5*d^4*x^2*
PolyLog[2, -E^(c + d*Sqrt[x])] + 5*d^4*x^2*PolyLog[2, E^(c + d*Sqrt[x])] + 20*d^3*x^(3/2)*PolyLog[3, -E^(c + d
*Sqrt[x])] - 20*d^3*x^(3/2)*PolyLog[3, E^(c + d*Sqrt[x])] - 60*d^2*x*PolyLog[4, -E^(c + d*Sqrt[x])] + 60*d^2*x
*PolyLog[4, E^(c + d*Sqrt[x])] + 120*d*Sqrt[x]*PolyLog[5, -E^(c + d*Sqrt[x])] - 120*d*Sqrt[x]*PolyLog[5, E^(c
+ d*Sqrt[x])] - 120*PolyLog[6, -E^(c + d*Sqrt[x])] + 120*PolyLog[6, E^(c + d*Sqrt[x])]))/d^6

________________________________________________________________________________________

Maple [F]
time = 2.25, size = 0, normalized size = 0.00 \[\int x^{2} \left (a +b \,\mathrm {csch}\left (c +d \sqrt {x}\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*csch(c+d*x^(1/2))),x)

[Out]

int(x^2*(a+b*csch(c+d*x^(1/2))),x)

________________________________________________________________________________________

Maxima [A]
time = 0.44, size = 261, normalized size = 1.00 \begin {gather*} \frac {1}{3} \, a x^{3} - \frac {2 \, {\left (\log \left (e^{\left (d \sqrt {x} + c\right )} + 1\right ) \log \left (e^{\left (d \sqrt {x}\right )}\right )^{5} + 5 \, {\rm Li}_2\left (-e^{\left (d \sqrt {x} + c\right )}\right ) \log \left (e^{\left (d \sqrt {x}\right )}\right )^{4} - 20 \, \log \left (e^{\left (d \sqrt {x}\right )}\right )^{3} {\rm Li}_{3}(-e^{\left (d \sqrt {x} + c\right )}) + 60 \, \log \left (e^{\left (d \sqrt {x}\right )}\right )^{2} {\rm Li}_{4}(-e^{\left (d \sqrt {x} + c\right )}) - 120 \, \log \left (e^{\left (d \sqrt {x}\right )}\right ) {\rm Li}_{5}(-e^{\left (d \sqrt {x} + c\right )}) + 120 \, {\rm Li}_{6}(-e^{\left (d \sqrt {x} + c\right )})\right )} b}{d^{6}} + \frac {2 \, {\left (\log \left (-e^{\left (d \sqrt {x} + c\right )} + 1\right ) \log \left (e^{\left (d \sqrt {x}\right )}\right )^{5} + 5 \, {\rm Li}_2\left (e^{\left (d \sqrt {x} + c\right )}\right ) \log \left (e^{\left (d \sqrt {x}\right )}\right )^{4} - 20 \, \log \left (e^{\left (d \sqrt {x}\right )}\right )^{3} {\rm Li}_{3}(e^{\left (d \sqrt {x} + c\right )}) + 60 \, \log \left (e^{\left (d \sqrt {x}\right )}\right )^{2} {\rm Li}_{4}(e^{\left (d \sqrt {x} + c\right )}) - 120 \, \log \left (e^{\left (d \sqrt {x}\right )}\right ) {\rm Li}_{5}(e^{\left (d \sqrt {x} + c\right )}) + 120 \, {\rm Li}_{6}(e^{\left (d \sqrt {x} + c\right )})\right )} b}{d^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*csch(c+d*x^(1/2))),x, algorithm="maxima")

[Out]

1/3*a*x^3 - 2*(log(e^(d*sqrt(x) + c) + 1)*log(e^(d*sqrt(x)))^5 + 5*dilog(-e^(d*sqrt(x) + c))*log(e^(d*sqrt(x))
)^4 - 20*log(e^(d*sqrt(x)))^3*polylog(3, -e^(d*sqrt(x) + c)) + 60*log(e^(d*sqrt(x)))^2*polylog(4, -e^(d*sqrt(x
) + c)) - 120*log(e^(d*sqrt(x)))*polylog(5, -e^(d*sqrt(x) + c)) + 120*polylog(6, -e^(d*sqrt(x) + c)))*b/d^6 +
2*(log(-e^(d*sqrt(x) + c) + 1)*log(e^(d*sqrt(x)))^5 + 5*dilog(e^(d*sqrt(x) + c))*log(e^(d*sqrt(x)))^4 - 20*log
(e^(d*sqrt(x)))^3*polylog(3, e^(d*sqrt(x) + c)) + 60*log(e^(d*sqrt(x)))^2*polylog(4, e^(d*sqrt(x) + c)) - 120*
log(e^(d*sqrt(x)))*polylog(5, e^(d*sqrt(x) + c)) + 120*polylog(6, e^(d*sqrt(x) + c)))*b/d^6

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*csch(c+d*x^(1/2))),x, algorithm="fricas")

[Out]

integral(b*x^2*csch(d*sqrt(x) + c) + a*x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (a + b \operatorname {csch}{\left (c + d \sqrt {x} \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*csch(c+d*x**(1/2))),x)

[Out]

Integral(x**2*(a + b*csch(c + d*sqrt(x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*csch(c+d*x^(1/2))),x, algorithm="giac")

[Out]

integrate((b*csch(d*sqrt(x) + c) + a)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,\left (a+\frac {b}{\mathrm {sinh}\left (c+d\,\sqrt {x}\right )}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b/sinh(c + d*x^(1/2))),x)

[Out]

int(x^2*(a + b/sinh(c + d*x^(1/2))), x)

________________________________________________________________________________________